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I. Affine Transformations and Tracking.

When a dynamic three-dimensional scene is observed via an
optical projection, a quite complex class of motions are induced
in the image plane [5,6,7,9]. 1In general, this class of motions
is highly non-linear, being dependent on the geometry of the
objects being observed as well as their trajectories in space(3].
Nevertheless, in many cases the motion is approximated closely
by translation, magnification and rotation in the image plane.

It is <~asy to see that this approximation is best for motion in
space which consists of translation and rotation about a line
parallel to the bare sight.

A better approximation results by consideration of the full
affine group in the plane, which includes shearing in two direct-
ions as well as the motions mentioned above. By definition, an
affine transformation in the plane R2 is of the form

T(y) = Ay + a, yeR® (1.1)
where A is a non—-singular 2x2 matrix and asR2 is considered as a
column vector (4,10]. The set of all such transformations T is

called the general affine group and is denoted GA(2). It is

easily seen that the subset consisting of translations, magni-

fications and rctations forms a subgroup, which we denote by

SA{2). In order that T(y) = Ay + a belong to SA(2) it is nec-
essary and sufficient that All = A22 and Alz = —AZl. In this

e . . 2 2 ,1/2 , .
case, the magnification factor is (All + A21} and the rotation

angle 1is atn(AZI/All)'

In order to consider dynamic images, it is necessary to allow
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A and a in (l1.1l) to cdepend on time. This gives rise to a tra-
jectory ul(t,y) for each yeR2 given by
u(t,y) = A{(t)y + a(t) (1.2)

where (A(t), a(t)) ¢ GA(2), and we require that A(0)=I, a(0)= 0
in order that the trajectory prass through v at time t=0; i.e.,
u(l,y) = vy.

As in [4], though only for linear transformations, we may
realize the pair (A(t), a(t)) as the solution of a linear system

of differential eguations. Let us define

Ace) = ace) A"t (1.3a)
A(E) = alt) -~ A(E) a(t), (1.3b)
from which,
A(t) = A(t) A(t), A(0) = I (1.4a)
a(t) = A(t) + A(£) a(t), a(0) = 0 (1.4b)

We may summarize the correspondences defined by (1.3) and (1.4)
as follows:

Theorem 1.1: Equations (1.3) and (l1.4) establish a one-to-one

correspondence between differentiable curves (A(t), a(t)) 1in

GA(2) satisfying A(0) = I, a(0) = 0 and continuous curves
(A{t), A(t)) where A(t) is an arbitrary 2x2 matrix and A(t) eRz.
Moreover, in order that (A,a) belong to SA(2) it is necessary

and A = =}

= Ay 12 21"

and sufficient that All

The first part of the above theorem apparent from (1.3) and
(1.4). A rigorous and detailed proof proceeds exactly as given
in [4] for linear transformations. The last part can be deduced
by a few calculations using the fact that elements of SA(2) satisfy

A = A and A = -A

11 22 12 21°
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Now, if we differentiate (1.2) with respect to t, use (1l.4)

and (l1.2) again, we obtain

—gﬁ—w,y) = A(E) ult,y) + \(t). (1.5)
Of course, vit,y) = —%%—(t,y) is the velocity field along the
trajectory u(t,y). Egu. (l1.5) shows that the velocity at a point

u depends on u as well as t and is therefore not spatially in-
variant.

Note that (1.5) in fact gives the differential equation for
an arbitrary affine trajectory, and when A(t) is restricted as
in Theorem 1.1, it gives the equation for a trajectory under the
restricted group of motions SA(2). By virtue of (1.2), we see
that (A(t), a(t)) obtained from (l.4) may be considered as a
fundamental system of solutions to the evolution equation (1.5).
Now it is important to note that the fundamental system of solu-
tions is completely determined by the pair (A(t), 2(t)) which
is spatially invariant, being a function of time only. To es-
tablish convenient terminology, let us give the following

Definition 1l.1: The pair (A{(t), A(t)) is the generalized velocity

-

field of the family of affine trajectories u(t,y) defined by (1l.3).

We may now state

Theorem 1.2: A family u(t,y) of affine trajectories satisfying

u(d,y) =y is completely determined from its generalized velocity
field, which is spatially invariant, via (1.4) and (l1.2). More-
over, the absolute velocity v at a point u on a trajectory is

given, as in (1.5), by v = A(t)u + \(t).

“

rl\l P‘\3 ,\5
Let us write A (t) =i , A(E) and expand the equa-
A
L2
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tion u = A u + A (where the t-dependence has been suppressed) in

the form
" u 173 0] Ju 107 .7 ro
3 1} 5 1 ) 2
Sl u A 0 ‘A +A3 0 +A4 a +\5 0 + A6 4 (1.86)
2 1 2
In this way we can identify individual vector fields vl(u),...,
6

v (u) and write (l1.6) in the form

In a similar manner for SA(2), we write

A Xa=h, ]
A = kl and A = AB A4 | ¥
2 4 3 J
so that
CHN e N N (b 0 91 I
gt a, ol + Az 1l + AB u, + uy |- (1.8

allowing four vector fields vl(u),..., v4(u) to be indentified.

Finally, we rewrite (l1.8) as
A (8) v () (1.9)
It should be noted that the functions v’ defined by (1.7) or

(1.9) are characteristic of the class of motions under consider-

ation, and more general classes of motion can be treated by

consideration of other generaturs Vl,vz,"'. In the cases of
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interest, the sets of vector fields derived above define the Lie
algebras (2] of GA(2) and SA(2). Any vector rfield v: R‘-*R2 incduces a
differential operator Yv’ called an infinitesimal transformation,

which is defined by
3Y, (1.10)

where Vl(y) and v2(y) are the components of v(y). In Tables

1l and 2 we list the infinitesimal transformations for the groups
GA(2) and SA(2), given in terms of a variable x=(xl,x2) for later
applicaticn

Table 1. Infinitesimal transformations for GA(2).

c o 2 . - 3 . = 3
17 5% 3° %1 3%y 5 - %2 3%y

3 < - 3 ) 3
%2 7 3%, 47 %1 3%, %6 = *2 3%,

Table 2. Infinitesimal transformations for SA(2)

X 3 X S + X 5
X, = - = X, —— —
1 k3 3 1 Xy 2 3%,
3 3 3
X, = X, = X, =— = X, a=—
2 3x2 4 1 IX, 2 3xl

Note that u(t,y) given by (1.2) may be regarded as the lo-
cation at time t of the particle which was at y at time t=0.
An observar at some point x will observe this particle provided
that x = u(t,y) = A(t)y + A(t). We may sclve this eguation for

y to obtain y = A'l(t)(x - a(t)). Thus we define the trace cf

the point x = R2 to be
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s(t,x) = a1(t) (x-a(t)), xeR°. (1.11)

We may interpret s(t,x) to be the particle which will arrive at
X at time t.

Let us now consider a two-dimensional image, represented by
a Iunction f:RZ*R, and suppose that the image f 1s subjected to
an atffine transformation (A(t), a(t)). Here a value £(y) is re-
garded as a feature which propogates along the trajectories of
the motion. This 1s an extremely powerful, and somewhat re-
strictive, assumption which is not always valid in real images.
For example, 1t is violated by changes in radiance values which
vary as a function of the angle of incident illumination. On
the other hand, it is valid in most 1instances over short time
intervals and deviations from this assumption may frequently be
treated as higher order effects.

In any event, 1f the feature £(y) 1s propagated along tra-
jectories, then a stationary observor, say at point x, will ob-
serve a value F(t,x) = f(s(t,x)) at time t, since s(t,xX) re-
presents the particle arriving at x at time t. We may now state
a most important result.

Theorem 1.3: Let a time-varying image F be given by

F(t,x) = £(s(t,x)) (1.12)

where s(t,x) is an affine trace as in (l.11l) with generalized

velocities

N C I A I ] R -t




(1.13)
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where X ,X,. are given in Table 1.

AR

A similar result holds 1if we restrict to SA(2), using

X .., X, from Table 2.

17 4

Proof: This result may be deduced from results given in
(7], provided we compensate for the change from "left invariance®
in that development to the "right invariance" of the current
treatment. However, a direct proof is instructional and will
be outlined herein. We first show

Lemma 1.3.1: For s(t,x) given by (1.1l1)

Ai(t)XiS. (1.14)

22
n
if ~100

Proof: First note that by direct calculation we have inxis=

z\ixiA'l(x—a) = A'l(z,\ixix) = A_l(z..\{vl(x)) = a "t (ax+n) . Also,
noting that —%E A-l = -A_lAA-l, we have —%% = —%E A—l(x-a) =
a7 tan  xeay-aTta = camta(x-a) - ATE(0 # aa) = ~aThax o+ o).

Hence, the desired result Zollows.

Returning to the proof of Theorem 1.3, we have

_ iy 2
D ARG F(ex) = T A (8] vy (%) Soef (s (8,x))
1 1 ] ;
. is f
: k f
=)0 vy (x) =, (£%) =)




8
= J 0. (f) X.s_(t,x) -
;¢ iR JSk (s)

ISy 3f SE(s(t,x))
= - 5 (8% ?E; (s) = - ——=—

3 . .
= - =~ (t,x) , as desired.

°oT

Theorem 1.3 appears to be fundamental to the analysis of
notion in dynamic images. As 1is evident from the proof, an
analogue is valid in a much more general setting. In fact,
scrutiny of the proof shows that it depends mainly on Lemma 1.3.1.
Consequently, the theorem will hold 1ox ary class of motions for
which a suitable form of the "trace" lemma can be cbtained. The
:ignificance of Theorem 1.3 lies chiefly in the fact that the
generalized velocities (which are usually unknown) appear as
linear coefficients in (1.13), along with gquantities which can

be calculated from the data F(t,x).

The main problem with the extraction of the generalized
velocities from (1.13) is the general lack of numerical pre-
cision in the calculation of the derivatives from real data
(e.g., digitized video). 1In subsequent sections we shall show
nhow to incorporate (1.13) in a feedback loop which 1is very stable
and how to obtain an equivalent formulation based on integration

rather than differentiation.




IT. A Velocity Feedback Tracker

The theoretical results of this section result from research
done under a separate contract* and for which a publication is
in preparation. 1In view of the fact that the techniques have
been incorporated in the experimental portion of this report,
these results will be presented in this report in the context
of affine transformations.

Let absoclute image coordinates be denoted by y = (yl,yz)
and introduce additional coordinates as follow: Let coordinates
z be established relative to a moving target, and let coordinates
X be established in a movable "window". We assume that the
motions of both the target and the window may be described by
affine transformations relative to absolute image coordinates.
It is assumed that the motion of the window may be chosen at
will, while the motion of the target is prescribed (e.g. by
nature) and is unknown.

By the affine assumption, we may describe the transformation
from window coordinates to image coordinates by

yw(t,X) = A(t)x + a(t}) , xeR , (2.1)

where (A(t), a(t)) is a suitable family of affine transformations.
Similarly, the transformation from target coordinates to image

coordinates 1is

yplt,2) = B(t) 2 +b(t) , zsRi (2.2)
for suitable (B(t), b(t)) e GA(2). Let us denote the respective
generalized velocity fields by (AA, AA) and (AB, \B).

By equating yT(t,z) = yw(t,x) we may solve for the point 2

* ONR Contract N00l4-76-C-1136
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on the target which arrives at point x in the window at time t,
to obtain:

z(t,x) =B Yax +a - b), (2.3)
where dependence on t has been suppressed on the right. We note
that z(t,x) in (2.3) may be regarded as a trace in the sense
of the previous section. By an application of Lemma 2.3.1 we

have:

Theorem 2.1: There exists a generalized velocity field (T (t),y(t))

such that
6
ozl x) YTy L(t) XLz (t,x), (2.4)
t L i i
i=1
vy 73 75
where v (t) = r L= and the operators X,,...,X,. are

given in window coordinates as in Table 1.

Now, let f(z) be a feature of the target, measured at point
z, and assume that this feature propogates along the target
trojectories. An observor at point x in the window therefore
observes data F(t,x) = £(z(t,x)), inasmuch as z(t,x) is the point
which arrives at x at time t. From Theorem 1.3 we obtain

Theorem 2.2: In the above context,

F

@

Qo
ot

6
(t,x) =7 v ()X, Ft,x) (2.5)

In principle, (2.5) allows the determination of the general-
ized velocities of the target relative to the window. Since
we have free choice of window velocities, relative to the image

coordinates, this is tantamount to measurement of absolute target

-




11
velocities. The conversion process will now be described.

Let us denote by X the window space, Y the image space, and
let T(Z) and T(z) be the respective tangent spaces. Since the map
from X to Y is y = A x + a, as in (2.1), it follows that the in-
duced map on the tangent spaces is simply y* = A x* [1,2].

—

Now the velocity field (T, y) defines a map X ~ T(X) given by

*
x =T x + Y (see (1.5)). Accordingly, a velocity field (¥, 1)
is induced on ¥. which maps z - T (z) in a similar fashion. The

velcecity field (A, A) is defined by the commutative diagram

*
Thus, we calculate y = Ay + X, by inverting (A,a) and taking

P4

the upper path, to be given by y* = A(T A_l(y-a)+y) = AFA-ly +
ay-ara~la. By comparison, we obtain
A = ara™t (2.6a)
A\ = Ay-ATA™1a (2.6b)

Now, since the velocity field (T,y) represents the difference be-
tween target and window velocities in the window coordinate system.
we see that (A,)) must represent this same difference relative to
the absolute image coordinate system. That is,

A= Ag =hy (2.7a

A= d = {(2.7b)
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We may summarize these results in a useable formas follows:

Theorem 2.3: Let (2.1) and (2.2) define the motion of a window

and a target, respectively, relative to a system of absolute image

coordinates, and let (A XA) and (A AB) be the corresponding

al B’
generalized velocities. Further, let (I',y) be the generalized
velocities of the target relative to the window, as determined by
(2.5).

Then

(2.8a)

A, - A, = Ay-ATA “a. (2.8b)

The previous theorem immediately suggests an algorithm for
determination of velocities in an image. More generally, the
algorithm performs tracking since, as will be seen, the result is
to force the window to follow the target by emulation of velocities.
The algorithm is as follows:

Step 1. Initialize the window by choice of A(O
(

a(0). In the
absence of a priori information, initialize AA /

),
0)=0 AA(O)=0.

Sample window values F(to,x) at time t0=0.

Step 2. Sample window values F(tn,x) at time tn=tn_l+6. Appro-

xXimate and Xi F at various points in the window and form a

£
3t
system of linear equations using (2.5).

Step 3. Solve the resulting linear equations for I RAC TR

-1 -1
Step 4. Replace AA+AA + ATA and KA«XA + Ay ATA ~a.
lote: If the calculation of Yy Ygrees were exact, this
9 i A 3 3\ -
would result in “A*As(tn) and 4 Xa(tn)
Step S. Take a 3 time step in the numerical solution A = AAA,
a = Ya + AAa to obtain (A(tn)’ a (tn)). This effectively moves




the window.

Step 6. Repeat from step 2.

Emperical results indicate that the above algorithm conveys
rapidly over a fairly broad range of target velocities. Although
the initial estimate of target velocities is usually fairly coarse,
it is generally in the right direction and results in good estimates
after 3 to 5 iterations. Subsequently, the target is tracked
very well with only a nominal amount of slew. More importantly,
the computational speed is such that it is feasible for real-time
implementation, with calculations having been done at 25 to 100
iterations per second on various computers, including time spent
in simulation support.

The most notable failure is a high degree of instability en-
countered in dealing with real data in the form of digitized
images. The available image data, however, did not have a suit-

able dynamic range in comparison to the noise level. Considerable

improvement resulted by expanding the contract and filtering to
obtain a greater dynamic range.

The results of performing the above algorithm on simulated

data is presented in appendix A.
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IIT. Alternate rormulation via 2 - forms.

The major source of error in the calculation of generalized
velocities would appear to be that introduced in the numerical
approximation of spatial derivatives. Although the situation is
improved somewhat by filtering and the use of multi-point formulas,
it is still desirable tc seek alternate approaches. As can be
seen from examination of the algorithm of the preceeding section,
any method for calculation of generalized velocities may easily
be inserted in the basic tracker.

In this section we appeal to a form of‘gzgke's Theorem [1]
to obtain an integration based analogue of Theorem 1.3. The
formula obtained is strictly valid only when the generalized
velocities are constant, although is is a useful approximation
when the rates of change of the velocities are small.

We consider the three dimensional space R3 consisting of
time t and two spatial variables x and y. Coordinates £=(t,x,y)
are chosen to make a right-hand coordinate system, and we observe
this orientation in defining differential forms. We state the
form of Stoke's Theorem required:

Stoke's Theorem: Let 0 be a rectangle in (t,x,y) space R3 and

let w be a differentiable 2-form. Then

Ju = [dw (3.1)
ERY; 19

Here w is of the form w = aodxdy + a,dydt + azdtdx, with

3 .

ao, Ay SPY differentiable functions of £cR™, and

Ya.  da, 33
du= =2 + —*+ —2 dtdxdy.

3t 3% B,




L
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[ Although the results to be presented may be generalized con-
siderably, our derivation and experimental results will be given
only for SA(2). Thus, the appropriate vector fields and corres-
ponding infinitesimal transformations may be obtained from (1.8),

{1.10) and Table 2, with x and y substituted in the obvious manne:.

By analogy with (1.9), for a constant velocity field

A= (Kl, Ay A3, A4), let us define a vector valued map

2

n: RIxr%-R2 by

4 : A AyX _ Ay
nLe) =] avige B3 (3.2)
i = + +
i=1 AZ A4x X3y
As usual, let nl,ﬂé denote the components of 1 .
NMow, if s(t,§) is the trace corresponding to the generalized '

velocity field A and F(t,§) = £(s(t,§)) 1s observed data, we may

express Equ. (1.13) of Theorem 1.3 as

3F _ . 3F , % 3F (3.3)

We intend to apply Stoke's Theorem to the 2-form defined by

w = F dxdy +ﬂlp dydt + WZF dtdx (3.4)

The principal result is stated as

Theorem 3.1l: In the context above,

31& 3%2
dw = + —=] P dtdxdy

X 3y
= 2A3F dtdxdy {3.5)

To establish this, we calculate dyu, using the fact that

dxdydt = dydtdx = dtdydx (whereas, for example, observing orienta-

tion, dtdydt = -dtdxdy). We have
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application of (3.3) and then (3.2) this simplifies to dw =

F %t F v dtdxdy = 2A3 F dtdxdy, as desired.

By an application of Stocke's Theorem, and a scmewhat tedious
calculation, we immediately obtain:

Theorem (3.2). Let & be a rectangle in R3 defined by opposing

corners (tl, X1 yz). In the context described above, in part-

icular with A constant, we have

4
LAk =k (3.6)

where k k k, are given in Table 3.

0" 17Tt T4

Table 3. Coefficients resulting from Stoke's Theoren.

kg = - [ F dxady
In
ky = [ F dydt
38

F dtdx
f

J’
R)

k, = [ xF dydt +
3

yF dtdx -2 [ F dtdxdy
Q O

o)
36 So

[

3
k, = [ xF dtdx - [ yF dydt
LRy 3

It is important that orientation be considered in the evalua-
tion of the coefficients in Table 3 (see [l]). The sign conven-
tion is such that for a principal 2-form (e.g., dxdy) a positive

{negative) sign prevails on a face of the rectangle I provided
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that application of a right-hand rule points outward from (in-

b
ward to ) the rectangle . Writing fx for fx 2 (similarly for
1

t and y) and assuming that t, < t2, X, < x 3%

1 1 ot Y1 < Yoo by way of

exanple we have,

[ Faxdy = [ [ F(t,,x,y) dxdy - [ | F(ty,x,y)dxdy,
Yy x >

R Yy X

and
[ xF dyat = x, [ | F(t,x,,y)dydt -x [ ] Fle,x,,y)dydt
1Y) t vy e’y

and

[ xFdtdx = | | xF(t,x,y,)dtdx - [ [ xF(t,x,y,)dtdx.
o8 X t Xt

The remaining integrals may be expranded in a similar fashion.

Observe that differences are not entirely eliminated from the
final formulas. However, the formulas are so written to indicate
that the differences are taken after integration, even though in
certain cases the formula could be collapsed with a difference
taken before evaluation of the iterated integral.

The advantage of (3.6) over (1.13) as a means of calculation
of the generalized velocities is achieved mainly by the filtering
effect of the surface and volume integrals. As a matter of prac-
tice, several rectangles Ql,..., %_ are selected. Each rectangle

m

Qe gives rise to an equation of the form (3.6),

4
L ok =kl (3.7)

The resulting system of m equations in 4 unknowns may then be
solved by a least-squares method. YNote that this apprcach may be

applied to the feedback tracking algorithm presented in Section 2
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to calculate the velocities Yreery 0of the target relative to

the window, replacing the corresponding calculations based on
(2.3). This has been implemented in a computer program and testec
on real image data. The results are very encouraging and are pre-
sented in part in Appendix 8. This method involves more com-
putational overhead, with the best rate achieved to this point
being about 10 iterations ( =frames) per second. With some stream-

lining we believe that real-time rates of 30 frames per second

can be achieved.




IV. Summary andé Conclusions.

This report presents a method based on the theory of Lie
groups for velocity tracking in a dynamic image in which the
notion of picture parts can be ascribed to affine transformations.
A feedback tracking algorithm was developed and tested on sim-
ulated data.

Since the random disturbances in real images preclude the
use of simple methods for obtaining equations involving the
velocities of trajectory, a method based on integration of
differential forms was developed. This method was incorporated in
the feedback tracker and tested on real image data. The results
are very encouraging, with computation speeds approcaching ten
frames per second on a VAX 11/780. We believe that this method
is viable as a component of a real-time video tracking system.

Among the problems left outstanding, a satisfactory algorithm
for target acquisition has not yet been developed. In the ex-
perimental work performed, the initial target location was supplied
as an input parameter. To be useful, a method for automating this
step is essential.

In addition, we continue to experience problems with numerical
percision. This seems to be related to the absence of sufficient
dynamic range in real image data, indicating that this could be
improved by changes in the capability of sensors. We feel that a
great improvement would result from greater contrast in the image
data.

Finally, the class of motions considered herein (affine or

restricted affine) is not general enough for many applications,
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and the methods need to be extended to include projective dis-
torticn as well.

The equations which relate generalized velocities to time-
varying images have other applications. They have been applied
to a problem in pattern matching with considerable success, as
fully described in [1]. The theoretical results and a surmary
of the experimental results of [l1l] have been submitted for :

publication as reference [8], which is attached as Appendix C.




(7]

(8]

[10]

(11]
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APPENDIX A

Feedback Tracker Simulation

A typical imaging system might include a sensor with a dia-
meter (or cross section) of 25 mm and an optical focal length of
200 mm. At a 500 x 500 pixel density we cbtain a conversion fac-
tor of .05 mm/pix or 20 pix/mm. With a target range of 1 km, say,
then we obtain a conversion rate from sensor to target of 5 m/mm
2@ 1 km.

In the results to be presented, translation velocities may

be regarded as being given in mm/sec. Conversion to pix/sec or

m/sec at the target may be done by multiplication by the appro-
priate factor. Thus, a translation velocity of 7 mm/sec at the {]
sensor corresponds to 20 pix/sec or to 5 m/sec at a target having
a range of 1 km. A magnification velocity of 1l/sec translates by
the same factor and would therefore represent a velocity of 5m/sec
2 1 km toward the sensor. On the other hand, rotational velocity
may be considered as given in radius/sec.

In Table A-1 we present the output of the tracking simulator
{the output routines were modified slightly for ease of presenta-
tion). UNote that the target velocities (10, -10, 10, 19) corres-
pond to a 3-D object with a translational velocity of 86.6 m/sec
2 1 km (about 194 miles/hour) which is rotating about 3 revolu-
tions per second about bore sight. The time base was chosen as
100 frames/sec. Inspection of the last four columns of Table A-1

shows that the target velocities have been acquired satisfactorily

after only 3 frames, at t=.03, and subseguently refined to exact

values.
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A3

The tracking simulation program, whose listing follows,

capable of a real-time rate of 33 frames/sec on a VAX 11/780,

cluding the time spent simulating target motion.

is

in-

J




A4

100 BIPRS00 P2 32203002303 00833003333333833838332532333333333332333¢24%

200 ( c
300 C Prodrams Title!: TRACK4,FOR
400 c
500 C Function: Demonstrate feedback tracker ysing sunthetic
4900 C data. Provide simulated motion congisting of
200 C translationr magnification and rotstion.
800 c
900 C Frodram Author: Thomas 6. Newman
1000 C Derartaent of Mathematics
1100 C Texas Tech University
1200 C Lubbock, Texas 79409
1300 C
1400 C Notice! Fermission is herewith dranted for use of these
1900 c pradrams: 1n whole or in earts far other than
1400 (" sersona’ or corrorate d4ain,
1700 £
1800 S 2S8R R R R R P PN P02 3023 0030003303303 032 22320338233 2283¢33848344
1700 C
2000 COMMON /WINDOW/ IMWSIZE WIND(SyS)ySWIND(S+5)yCOORD(2:5,5)
2190 COMMON /EQU/ NEQUsNUNK»A(919) + XLANDA(9) +B(9)
2200 COMMON /FARMS/ TIME»XYSTEFR)TSTEPYFEED(S)
2300 COMMON /COCHGS/ XTRANI,YTRANISECOSI,ESINI,
2400 1 XTRANW YTRANWECOSW,ESINN
2500 2 XVELISYVELI»UMAGIVROTI,
2600 3 XVELWs YVELWVMAGWIVROTW
2709 100 TYPE %, ENTER VELOCITIES AND PRESS RETURN’
2800 READ (S5»%,ENDN=200) XVELI,YVELI,VMAGI»VROTI
2900 CALL INIT
3000 00 179 I=1,19
3100 CALL SAMPLE
32090 CALL DERIV
3300 CALL LINEQ
3490 CALL UPDATE
3500 CaLlL MOVER
3600 CAaLL COMPAR
3700 17% CCNTINUE
3800 GO 7O 100
3909 2090 STOP
40090 END
4106 C
200 C Peee»o0»>y SUBROUTINE INIT «<<{4L<L<
4300 C
4300 € This subroutine rerforms various initialization functions.
4500 C
4600 C
4700 SUBROUTINE INIT
4800 COMMON /WINDOW/ TWSIZESWIND(S»S)sSWIND(S+S)COORD(2+5:5)
4900 COMMON /EQU/ NEQU/NUNK,R(9¢9) + XLAMDA(D) s B()
3000 COMMON /FARMS/ TIME,)XYSTEP»TSTEP,FEEDN(S)
5100 COMMOM /COCHGS/ XTRANI»YTRANI(ECOSI ESINI,
5200 1 XTRANWs YTRANWSECOSW/ESINW,
5300 2 XVELI,»YVELI»UMAGI»VROTI,
5440 3 XVELW» YVELW/»UMAGUWVROTW




8500 C

5600 C Data is to be sameled a3t each roint of 3

5700 C window of size IWSIZE by IWSIZE. A linear eauation
5800 C is to be faormed at each ‘interior® point» using the
5900 C boundary raints only in the differentiation process.
46000 C

6150 C The number of eauationss NEQUs is therfore the nuaber
6200 c of interior rointss 3nd involve NUNK unknownss = 4
5300 C in this erodrams but chandgeable to 6 for GA(2).

5400 C

5500 C XYSTEF and TSTEP are lodical sters in space and time.
4600 c

5700 IWSIZE = §

5800 NEQU = (IWSIZE - 2)%x2

6900 NUNK = 4

7000 XYSTEP = 0.0%

7100 TSTEF = 0,01

7200 C

7300 c

7400 c GENERATE THE COORDINATES OF THE SAMPLE GRID RELATIVE TO
7500 (I THE WINDOW.

7600 C

7700 MID = IWNSIZE/2 + 1

7800 DO 10 I=1,IWSIZE t
7900 DO 1S J=1,INWSIZE

3000 C

8100 c WINDOW ORIGIN AT CENTER OF SAMPLE GRID

8200 c

3300 COORD(1,1,J)=XYSTEPESFLOAT(I - MID)

8400 COORD(2yIs2)=XYSTEPXFLOAT(J ~ MID)

8500 c

8600 (3 WINDOW ORIGIN AT CORNER OF SAMPLE GRID

8700 c

8800 C COORD(I» I+ JI)=XYSTEPXFLOAT(I)

8900 C COORD(2y 1+ J)=XYSTEPXFLOAT(J)

9000 c

2100 15 CONTINUE

9200 10 CONTINUE

9300 c

92400 c SET FEEDRBACKS TO UNITY, LOWER VALUES PRODUCE

9500 C SLOWER ACQUISITION BUT GREATER STARILITY. LARGER VALUES
2500 ( MAY SPEED AQUISITION BUT CAUSE INSTABILITY.

9700 N

9800 FEED(1) = 1,0

9900 FEEDC(2) = 1,0

12000 FEED(3) = 1.0

16100 FEED(4) = 1,0
12200 FEED(S) = 1.0

10300 FEED(S) = 1,0

10400 C
10500 C INITALIZE THE TRAJECTORY OF THE IMAGE AT RORE SIGHT
10500 C

107950 XTRANI = 0.0

10300 YTRANI = 0.0

]
o s 44n----u-n---ln-uh--iiiihI-iIHi-ﬁlII-I-IliI.ilIlilu---.._.-_n-.--l‘




159060
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000
12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13400
13700
13300
13700
14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
1500¢
16100
15200

OO0 o0

(or] [wEg Ny

OO0

1000

1

XVELW

A6

ECOSI
ESINI

|
[= BNl
-

INITALIZE THE FOSITION OF THE WINDOW AT BORE SIGHT

XTRANW = 0.0
YTRANY = 0.0
ECOSW = 1.0
ESINW = 0.0

INITALIZE THE WINDOW VELOCITY TO XERO

YVELW
UMAGH
VROTW

GET AN INITIAL SAMPLE FROM WINDOW

TINE = 0,0
CALL SAMPLE

TAKE THE INITIAL STEP IN TIME
CALL MOVER

FRINT PAGE HEADINGS

WRITE (6,1000)

WRITE (691010)

FORMAT(’1’,'TIME’ sSXs'XTRANI‘y8Xs ' YTRANI‘s8Xs/ECOSI’»9X,
"ESINI‘#9Xy /XVELI'»?Xs/YVELI' 99X+ VMAGI‘ 19Xy’ VROTI")

1010 FORMAT(15X:’XTRANW‘»8Xs 'YTRANW' 18X "ECOSU’ +?X,

(3]

a0

[or Nor Maw B s Ner N o)

1

"ESINW/ s9Xs ' XVELW' s 9%y ' YVELW’ 19Xy ' VKAGU’ »9X» 'VROTW ')
PRINT THE INITIAL COMFARISON BETWEEN TRAAJECTORIES

CALL COMPAR
RETURN
END

P¥32o>sx>> SUBROUTINE SAMPLE (<<€

This subroutine denerates values in 3 rectandular
grid in the tracking window, saving the old values.

SUBROUTINE SAMPLE
COMMON /WINDOMW/ IWSIZE,WIND(S:5)SWIND(S5:5),CO0RD(2+5,3)
DO 20 I=1,IWSIZE

D0 25 J=1,IWSIZE
X = COORD(1sI,J)
Y = COORD(2,1I9J)
SWIND(IyJ)
WINDCIW )

WIND(I,J)
FWIND(XsY)




156300

16400
15500
16600
13700
15800
16700
17200
17100
17200
17300
17400
17500
17500
17700
17800
17900
18000
18100
18200
18300
13400
183500
18400
18700
18800
18900
19000
17100
17200
19300
19400
19500
19500
19700
17300
19900
20000
20100
20200
20300
20400
20500
20600
20700
20800
20900
21000
21100
21200
21309
21409
21309
21600

OO0 O00

OO0 OO

OO0 00

rJ
(& ]

<

10
20

CONTINUE
CONTINUE

RETURN
END

>>>»2555%> SUBROUTINE DERIV <<

This routine calculates the various derivatives needed
for formation of the linear sustem for the denerslized
velaocities.

SUBROUTINE DERIV
COMMON /WINDOW/ IWSIZE,WIND(S,5) SWIND(S,5)»CO0ORD(2+5:5)
COMMON /EGU/ NEQU s NUNKsA(919) s XLAMNDA(D) s B(?)

COMMON /PARMS/ TIME,XYSTEP,»TSTEP,FEED(4)
SCALER = 2.0 x XYSTEP/TSTEP

K = IWSIZE - 2

DO 20 I=1+K
IT =1 +1
DO 10 J=1yK
Jd = J+ 1
L= (I-1)%K + J
X = CCORD(1,11,JJ)
Y = COORD(2,I1»JJ)

DX=WIND(II+1sJJ) - WIND(II-1,J0)
DY=WIND(II,JJ+1) - WIND(II,»JJ-1)
A(Ls1)= DX
Al(L,2)= DY
A(Ls3)= XXDX + YXDY
A(Lr4)= X3DY - YXDX
B(L)= SCALER ¥ (WIND(II,JJ) ~ SWIND(II»JJ))
CONTINUE
CONTINUE
RETURN
END

»>55055>%> SUBROUTINE LINER <<

Modified from the arduaent fora:
LINEQ(MsNsAYXsB:CC)

SUBROUTINE LINEQ
COMMON /EQU/ NEQU NUNK,A(999) s X(9)sR(9)

INTEGER CC

SOLVE AX=R, T HOLDS AN UFPER TRIANGULAR MATRIX WHILE S

IS WORKSPACE., THE METHOD FACTORS A=UXT WHERE THE COLUMNS OF
U ARE ORTHOGANAL AND T IS TRIANGULAR. THE RESULTING SYSTEN
TxX=B’ IS EASILY SOLVED BY BACK SUBSTITUTION. ASSUHE M
EQUATTONS AND N UNKNOWNS. ( N =M <= 9 )

THE MATRIX OF COEFFICIENTS. A IS STORED IN THE FIRST N ROMS
AND THE FIRST M COLUMNS OF THE 9X9 A ARRAY. THE ROUTINE
ERING3 IN THE WHOLE 7X9s BUT ONLY USES A(1,51) TO A(NsM)
(RECALL THAT FORTRAN STORES THE ARRAY COLUMN-WISE, RUT




21790
21200
21740
220739
221090
22200
22300
22400
225090
232800
22790
22800
22900
23000
23100
23200
23300
23400
23500
21600
23700
23800
23900
24000
24100
24200
24300
24400
24509
24600
24700
24800
24900
23000
25100
25200
25300
25400
23300
25600
25700
25800
25960
26000
26100
26200
25300
26400
26500
26600
26700
26800
26500
27000

Ag

C  ADRESSES THE ELEMENTS IN THE STANDARD ROW,COLUMN FORMAT)
NOTE?! THE A& ARRAY IS ALTERED DURING EXECUTION.

(9]

DIMENSION T(9:9)
zC=1
M = NEQU
N = NUNK
M HUST BE <= 9y AND N<=M, CC IS A COMPLETION CODE: IF THE
SUBROUTINE EXECUTES PROPERLY CC WILL BE RESET TQO 0 BEFORE RETURN
D0 S I=1,NUNK
X{I) = 0,90
CONTINUE
D0 40 I=1sN
IF (1.EQ.1) GO TO 25
00 20 J=1,M
5=0
I1=1-1
D0 10 K=1,I1
c IF (T(KsK) LT, .,0001) GO TO 5000
S=S+A(JrKIXRT(KsI)/T(K»K)
10 CONTINUE
AlJrI)=ACJIN-5S
20 CONTINUE
25 [0 40 K=I,N
S=0
D0 30 J=1:M
S=5+A(Jy 1) XA(JIK)
30 CONTINUE
T(I:K)=S
40 CONTINUE
DO 40 I=1,N
5=0
Do 50 J=1,M
S=S+A(Js 1)XB(J)
30 CONTINUE
X(I1)=$
40 CONTINUE
DO 80 I=1sN
I1=N+1-1
IF (11.EQ.N) GO TO 75
12=11+41
DO 70 J=I2sN
X(I1)=X(I1)~-T(I1,J)8X(J)
70 CONTINUE
c IF (T(I1,11),LT..0001) GO TO 5000
S X(I1)=X(I1)/TC(I1s1I1)
80 CONTINUE
CC=0
RETURN
5000 CC=-1
C A COMPLETION CODE OF -1 INDICATES THAT THE SUEBROUTINE
¢ TRIED TO DIVIDE BY 0.
RETURN
END

o0

on
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27200
27300
27400
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27600
27700
27800
27900
28000
28100
28200
28300
28400
28300
23600
28700
28800
28900
29000
29100
29200
28300
29400
293500
29600
29700
29800
29900
30000
36100
30200
39300
30400
30500
30600
30700
30800
30900
31000
31100
31200
31300
31400
31300
31600
31700
21800
31900
32000
32100
32200
32300
32400

OO0 00
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»225233>5> SUBROUTINE UPBATE <<{<<<d<

This routine urdates the velocities of the window
following the calculation of the tardet velocities
relative to the window. Sensitivity may be varied
by the feedback factors in the asrray FEED.

SUBROUTINE UFPDATE
COMMON /WINDOW/ IWSIZE WIND(S5+3)s»SWIND(S+5)sCOORD(2,5+3)
coMMON /EQU/ NEQUsNUNK»A(9,9) » XLAMDA(9) »B(9)
COMMON /PARMS/ TIMEsXYSTEP,TSTEP,FEED(6)
COMMON /COCHGS/ XTRANI,YTRANI,ECOSIJESINI,
XTRANW YTRANW,ECOSW,ESINW,
XVELIsYVELI,VUMAGIsVROTI,
AVELW» YVELW,VMAGW,VROTW
DVELX = (ECOSW % XLAMDA(1) - ESINW x XLAMDA(2)) -
(XLAMDA(3) ¥ XTRANW - XLAMDA(4) % YTRANW)
DVELY = (ESINW x XLAMDA(1) + ECOSW % XLAMDA(2)) -
(XLAMDA(4) X XTRANW + XLAMDAC(3) * YTRANMW)

DMAGY = XLAMDA(I)

DVROT = XLAMDA(4)

XVELW = XVELW - FEED(1) X DVELX
YVELW = YVELW - FEED(2) % DVELY
UMAGW = UMAGW - FEED(3) % DMAGV
VROTW = VROTW - FEED(4) x DVROT
RETURN

END

D200 %> SUBROUTINE MOVER <<<<{LLK<K

This routine moves the window by taking 3 ster in

the differential eauations for the affine tranformation
which controls the window location. The method uysed is
3 simple Euler methad.

The routine slso simulates the motion of the tarset by
solvind the corresronding differential eaquation for the
tardet. This rortion would be removed if resl dats were
being used,

SUBROUTINE MOVER

COMMON /PARMS,/ TIME,XYSTEP,TSTEP,FEED(4)

COMMON /COCHGS/ XTRANI>YTRANI,ECOSISESINI,
XTRANWs YTRANW,ECOSW ESINW,
XVELI»YVELI»UMAGI,VROTI,
XVELW,»YVELW s UMAGW, VROTY

DECOS = VMAGW x ECOSW - VROTW x ESINW
DESIN = VROTW x ECOSW + VUMAGW % ESINW
ECOSW = ECOSW + TSTEF % DECOS
ESINW = ESINW + TSTEF x DESIN




32500
32600
32700
32800
32700
33000
33100
33200
33300
33400
33500
33500
33700
33800
33900
34000
34100
34200
34300
34400
34500
34600
34700
34800
34900
33000
33100
35200
35300
395400
35500
35600
35700
35800
35900
35000
36100
36200
36300
35400
343500
36600
36700
36800
36700
37900
37100
37200
37300
37400
37500
37600
37700
37300

OO0

OO0

OO0 00

2000

2010

OO0 O0O0O00O0

[PV

AlQ

DXTRAN = XVELW + VMAGWXXTRANW - VROTWXYTRANW
DYTRAN = YVELW + UROTWXXTRANW + UMAGWXYTRANW
XTRANW = XTRANW + DXTRANRTSTEP
YTRANW = YTRANW + DYTRANXTSTEFP

The following rortions simulate aotion of the tardet.

DECOS
DESIN
ECOSI
ESINI

UMAGI x ECOSI - VROTI % ESINI
VROTI x ECOSI + VMAGI ¥ ESINI
ECOSI + TSTEF % DECOS
ESINI + TSTEP x DESIN

4 Houou

DXTRAN
DYTRAN
XTRANI
YTRANI

XVELI + UMAGIXXTRANI - VROTIXYTRANI
YVELI + VROTIAXTRANI + UMAGIXYTRANI
XTRANTI + DXTRANXTSTEP
YTRANI + DYTRANXTSTEP

Increment time.

TIME = TIME + TSTEP

RETURN
END

2233350255 SUBROUTINE COMPAR <K<K

This routine produces rprinted outeut for evaluation
purposess and is therefore 3ncillary to the oreration
of the tracker.,

SUBROUTINE COMPAR
COMMON /PARMS/ TIMEsXYSTEP,TSTEP,FEED(4)
COMMON /COCHGS/ XTRANI»YTRANIJECOSI,ESINI,
XTRANW:YTRANW,ECOSW,ESINUY,
XVELI»YVELI UMAGI»VROTI,
XVELW, YVELW,UMAGW VROTW
WRITE(6+2000) TIME»XTRANI » YTRANIJECOSI»ESINI»XVELIsYVELI)UMAGI,
VROTI
FORMAT(2XsF3.2,8(3XsE11,4))
WRITE(6,2010)XTRANW, YTRANW,ECOSW,ESINM ¢+ XVELWs YVELW ) UMAGW
VROTW
FORMAT(10X,8(3X,E11.4))
RETURN
END

Py bRk FUNCTION FWIND <K

This function returns 3 value at the roint (xry)
in the window., It first mnars to the corresronding
roint in absolute imade coordinates and calls for
1made valuye at that roint (see FIMAGE below).

FUNCTION FMIND(X,Y)
COMMON /COCHGS/ XTRANI»YTRANI+ECOSI,ESINI,




37900
38000
38100
33200
38300
38400
38500
38400
38700
38800
38900
39000
39100
39200
19390
39400
39500
39600
39700
39800
39900
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40100
40200
40300
40400
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40600
40700
40800
40900
41000
11100
41200
41300
41400
31500
41500
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41800
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42000
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o0
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oty

All

XTRANUWs YTRANWYECOSWESINW,
XVELI,YVELI,VMAGIVROTI,
XVELW, YVELW, VMAGW s YROTW

XIMAGE = XTRANW + ECOSWAX - ESINWXY
YIMAGE = YTRANW + ESINWZX + ECOSWxY
FWINIt = FIMAGE(XIMAGErYIMAGE)
RETURN

END

2225230257 FUNCTION FIMAGE <<«

This function returns the value 3t roint (x»y) in the
absolute imade coordinate system. It mars to tardet

coordinates angd calls for the value at the corresronding
~oint an the tarset (see FORJ below).

FUNCTION FIMAGE(X:Y)

COMMON /COCHGS/ XTRANI»YTRANI,ECOSIJESINI,
XTRANW, YTRANW,ECOSW,ESINM,
XVELIsYVELI»VUMAGI,VROTI, {
XVELWs YVELW UMAGW»VROTY

DET = ECOSIXx2 + ESINIXx2
0X = X - XTRANI
DY = Y - YTRANI

X0kJ= { ECOSIxDX + ESINIXDY)/DET
YOBRJ= ( -ESINIXDX + ECOSIXDY)/DET
FIMAGE = FOBRJ(XOBJ»YORJ)

RETURN
END

222033035 FUNCTION FOBJ <{<KLKLKK

This function returns the gray value at a epoint (xry)
in tardet coordinates. For actual trackindr this
routine would be rerlaced byw one which retrieves from
the imadge database. In the simulations however, the
routine merely returns a suynthetic value senerated
from an exrression.

FUNCTION FORJ(XsY)

FOBJ = 1.0 + 10.0X%XX -5,0X%Y 4 20,0%XKY
RETURN

END




APPENDIX B

Tracking With Differential Forms

A tracking program was developed which utilized the theory
presented in Section III. In order to test this program, digit-
ized video images were obtained from the Advanced Technology
Office, Instrumentation Directorate, White Sands Missile Range.
One such image is shown in Figure B-1l. A sequence of test images
was prepared from this data by shifting to inject additional mo-~
tion. Sections of the first six frames are shown in the left hand
column of Figure B-2.

Parameters in the tracking program were set to use a 3x3 win-
dow in 3 consecutive frames to form a 3x3x3 rectangle in space.
Since the pr- ;ram uses 9 such windows, the actual track gate con-
sisted of 9x9x3 points.

The right hand column of Figure B-2 shows the output frames
obtained by the tracker. Observe that the output lags the input
by the depth of the track gate. This is why there are fewer out=
puts frames than input frames. We see that the target was ac-~
quired immediately, and successfully tracked over the full se-
quence of frames.

The computation rate was about 10 frames per second on a
vaX 11/780. However, the program is written to allow selection
of window sizes and could be streamlined a great deal.

Although the results shown in Figure B-2 are impressive, we
hasten to point out that the motion is mostly translation, and our
attempts to test the algorithm on a wide range of motions have
been frustrated by availability of data. Further work is ongoing,
and refinements to the tracking program are expected to be forth-

coming.

Beoncn, ——— R — . T ———
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B4

200" ¢ FROGRAMMER : DONNA K. TERRAL
30 C DEPARTHENT OF MATHEMATICS
30 € TEXAS TECH UNIVERSITY
30 C
190 ¢ PERMISSION IS HEREWITH GRANTED TOD UTILIZE THIS PROGRAM FOR
120 ¢ OTHER THAN PERSONAL OR CORPORATIVE GAIN.
140 C
160 C
IR £33 838283808 28282¢22332382323328228283802232330232332¢288332888238¢8¢%7.
200 C KXREXXKXXXKLXRKXEXXXAAEREKE MAIN PROGRAM XXXXEXXXEXXXKLXLXEXLAXRLEXR
P I S 2332 £ 23338208208 0032830338282238808332302283¢828329283823883¢8238332823¢
240 C PURPOSE: GIVEN A SET OF IMAGESs TRACK A TRAGET BY USING
250 C INTEGRATION TO DETERMINE THE MOTIONS (TRANSLATIONsROTATION:
28¢ € MAGNIFICATION) OF THE TARGET,
RO IR 8 3 3 23 3 20 3223220 0323382338338¢3233223283328223¢23822222t3883283233¢0¢28.
320 ¢
3135 € t COMMON DECLARATIONS %
360 ¢
380 FARAMETER (IW=9+JW=9,KW=3yIR=3+JB=3sKB=3+1S1ZE=128,JSIZE=<128)
300 ¢
420 COMMON /WINDOW/ WIND(IWsJWsKW)CORRD(ISIZE,JSIZE2)
‘ 430 INTEGER WIND
) 450 COMMON /ORIGIN/ I0+J0sKOrX0rYO (
‘ 430 INTEGER 10,J0,KOsX0,YO 4
590 COMMON /BUFFER/ RUF(IByJR,KB’
520 INTEGER BUF
540 COMMON /CORNER/ X11X2sY15Y29T1,72
560 INTEGER X1sX2,Y1sY2,T1,T2
580 COMMON /WEIGHT/ W(IRsJByKB) yWX(JByKE) s WY(IB+KB)»WT(1ByJB)
500 INTEGER WsWXs WY WT
520 COMMON /COCHGBS/ XVELI»YVELI+VROTIsVSAGI,»TIME)TSTEP
540 REAL XVELI,»YVELI)VROTIsVUMAGI,»TIME,TSTEP
‘ 660 COMMON /PARMS/ ROW,COLyPROW,PCOL» NUMROW s NUMCOL »WTEST
{ 530 INTEGER ROW,COLsPROWsPCOL s NUMROW s NUMCOL s WTEST
. 700 COMMON /IMAGE/ IMAGE(ISIZEsJSIZE)
720 INTEGERX2 IMAGE
i 740 COMMON /EQU/ ALFHA(4) BETAsCOEFF(9+4)»VECTOR(9)ySOLN(4)FEED(4)
4 760 INTEGER ALPHAsRETA !
i 780 C j
: 800 ¢ ¥ MAIN VARIABLES X
] 329 INTEGER I1,J1sK1
f 340 INTEGER CCsCOUNT
; 250 ODATA COUNTYCCsKL /191517
! 330 ¢
| 200 CALL INIT
' 920 C
i 240 ¥r€  MAIN LOOP  %xxx
; 740 D0 100 LOOP = 1,4
; 79 r
i 1500 ¢ ALL OR A FPORTION OF THE INTEGRATION RESULTS CAN BE USED
j 1020 SOLN(1) = FEED(1) % SOLN(1)
1040 SOLM(2) = FEED(2) % SOLN(2)
10460 S0LN(3) = FEED(3) % SOLN(3)

FEED(4) % SOLN(4)

|
!
1 1080 SOLN(4)




“ BS
1100 C
1120 CALL WINDOW (LDOP)
1140 C
1140 CALL PRINT
1180 C
1200 € XXX LOOF COMPUTES MOTION USED TO MOVE WINDOW %%x%
1220 00 1 J1 = 1sJWsJB
1240 00 2 It = 1,IWsIB
1260 CALL GETBUF (I1sJi,K1)
1280 IF (LOOP .NE. 1) GO TD 10
1300 CALL BLDW
1320 10 CALL GETEQU
1340 CALL MATRIX (COUNT)
1360 COUNT = COUNT + 1
1380 2 CONTINUE
1400 1 CONTINUE
1420 CALL LINEQ (COEFFsSOLNsVECTORs9s4+CC)
1440 COUNT = 1
1460 € XXX END MOTION LOOP %%%
1480 C
1500 TIME = TIME + TSTEP
1520 100 CONT INUE 0
1540 € X3%x END MAIN LOOP X%x%
1560 C
1580 STOP
£600 END
1620 C
1640 € KXEXXKEXXEERLEXRXTRRXELXXXEEXKEXBRERKARFXERLALAXRALXRXIREAXXLLAXRRALR
1660  © SXEEEREEREXTXRALRRREREXXXEREREXAXXXXLERRKRXXXXXXXRRREXKXIXXXXAXX AR K
1480 C SUBROUTINE GETRUF FILLS A BUFFER ARRAY WHICH WILL CONTI:N THE
1700 C DATA POINTS FORMING THE CUBE TO BE USED IN SUBROUTINE GETEQU.
1720 ¢ THE FOSITION IN WHICH TO BEGIN IS PASSED THRU THE ARGUMENTS.
1740 ¢ CHUF(191s1)=WIND(I1sJ1,K1)>
1750 C KREXEXXXXRAEEXLLLARKLRRERKKXALXXXK LK XXXKKXRKERKEKAX XXX XXX LXK KK
1730 €
1800 SUEROUTINE GETBUF (I1,J1,K1)
1320 ¢
1840 C ¥ ARGUMENTS x
1860 INTEGER I1rJ1sK1
1830 ¢
1200 © * COMMON DECLARATIONS X
1926 ¢
1946 FARAMETER (IW=9,JN=9,KW=3,1B=3+JB=3,KB=3,ISI2ZE=128,JSIZE=128)
1950 €
1230 COMMON /WINDOW/ WIND(IWsJWsKW) sCORRDCISIZE,JSIZE2)
2000 INTEGER WIND
2620 COMMON /ORIGIN/ I0sJ0,KO»X0sYO
2040 INTEGER I10/J0+KOsX0sYO
2060 COMMON /BUFFER/ EUF (IR, JRsKB)
2080 INTEGER BUF
2100 COMMON /CORNER/ X1:X29Y1sY2,T19T2
212¢ INTEGER X1+X29Y1sY2,T1,72
2149 C
240 C % LOCAL VARAIBLES x
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INTEGER XsY,7

X1 = 11 - 10

Yi = Ji - Jo

T1 = X1 - KO

X2 = X1 +1IB -1

Y2 = Y1 + JUB - 1

T2 = 71 + KB - 1

D0 30 1 = 1,IB

D0 30 4 = 1,JB
00 30 K = {,KR

X =11 +1I-1
Y=J1+J-1
T=Kt +K -1
BUF(TyJdsK) = WIND(X,Y,T)

CONTINUE

RETURN

END

1220333033202 32033083303020030002 2003200300338 8330302033008¢200328¢]
L 2232220023333 3 0083330000303 3 0003300800033 000032023008 8832008952382

SUBROUTINE MATRIX TAKES THE ALPHAS AND BETA FROM THE SUBROUTINE

GETEQU AND PUTS THEM IN THE FORM AX=B WHERE LOOPS OF GETEQU
FORM THE 2-DIMENSIONAL ARRAY A AND THE VECTOR B.

ONCE AX=B IS FORMED LINEDQ IS USED TO SOLVE FOR X.

IN MATRIX, COEFF(9s4) IS ARRAY A AND VECTOR(9) IS ARRAY B

1233005350832 08330853 0800002008000 0 3330020080003 003003¢ 080002223

SUBROUTINE MATRIX (COUNT)

X ARGUMENTS x
INTEGER COUNT

X COMMON DECLARATIONS x
COMMON /EQU/ ALPHA(4)+BETA,COEFF(9+4)»VECTOR(9)+,SOLN(4)FEED(4)
INTEGER ALPHAsBRETA

COEFF(COUNTs1) = FLOAT(ALPHA(1))
COEFF(COUNT,2) = FLOAT(ALPHA(2))
COEFF(COUNT»3) = FLOAT(ALPHA(3))
COEFF(COUNT,4) = FLOAT(ALPHA(4))
VECTOR(COUNT) = FLOAT(BETA)
RETURN

END

EREEP 0P E S OR300 0232000300300 33200833238 8300 0003020008ttt
LEL ORS00 0P b S0ttt PP st e ist it eiiietieeisieioiiioss

SUBROUTINE GETEQU
COMFUTES CONSTANTS ALPHAC1) THRU ALFHA(4) AND BRETA IN THE
EQUATION ALPHACL) X LAMBDACL) + ALPHAC2) X LAMBDA(2) +

ALFHA(Z) % LAMBDA(3) + ALPHA(4) % LAMBDA(4) = BETA,» WHERE
ALFHACL) THRU ALPHA(4) AND BETA ARE FORMED FROM SURFACE AND
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VOLUME INTEGALS OVER A CURE INDEXED BY X1,X2,Y1,Y2,T1,72.
THESE INTEGALS ARE NUMERICALLY INTEGRATED USING THE TRAPEZIQD
RULE.

LET?
FXYT REFRESENT THE VOLUME INTEGAL OVER THE CUBE

FXY1 REPRESENT THE SURFACE INTEGAL OVER THE FACE XY @ T=1
FXY2 ' ' . J * ' FACE XY @ T=2
FYT1 ] ' . ' * ¢ FACE YT @ X=1
FYT2 ' ' . . * ' FACE YT @ X=2
FTX1 . . . . . * FACE TX @ Y=1
FTX2 ‘ ' . ‘ ' ' FACE TX @ Y=2
YFYT1 REPRESENT THE INTEGAL OVER Y % (FACE YT) @ X=1
YFYT2 : . ' * Y X (FACE YT) @ X=2
XFTX1 ' ' ' * X % (FACE TX) @ Y=1
XFTX2 . R * X % (FACE TX) @ Y=2

THENS
ALPHA(1) = FYT2 - FYT1
ALPHA(2) = FTX2 - FTX1
ALPHA(3) = X2XFYT2 - X1XFYT1 - 2%FXYT + Y2%FTX2 - Y1$FTX1

ALPHA(4) YFYTL - YFYT2 + XFTX2 - XFTX1
BETA = FXY1 - FXY2

P e e et PR et i oo te oot ptoioiisotsdedestits it s s

SUBROUTINE GETEQU

% COMMON DECLARATIONS x
PARAMETER (IW=9,JW=9,KW=3,1B=3,JB=3,KB=3,1S1ZE=128y JSIZE=128)

COMMON /BRUFFER/ BUF (IByJB:KB)

INTEGER BUF

COMMON /CORNER/ X1rX2:Y1,Y2,T1,T2

INTEGER X1sX25Y1,Y2,T1,72

COMMON /WEIGHT/ W(IBsJBsKB) WX(JBrKB)+WY(IB)KB)sWT(IB,JB)
INTEGER WeWX WY UWT

COMMON /EQU/ ALPHA(4)BETAyCOEFF(954)»VECTOR(P)»SOLN(4),FEED(4)
INTEGER ALPHAsBETA

% LOCAL VARIABLES x
INTEGER FXY1sFXY2sFYTLsFYT2sFTX1sFTX2:YFYTLyYFYT2,XFTX1 s XFTX2sFXYT

FXYT
FXY1
FXY2
FYT1
FYT2
FTX1
FTX2
YFYT1
YFYT2
XFTX1
XFTX2

[ U I R R T LI 1}
O OO O OCOO

OO OO0
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4340

4340
4380
4400
4420
4440
4460
4480
4500
4520
4540
4540
4580
4600
34620
4640
4660
4480
4700
4720
4740
4760
4780
4800
4820
4840
4860
4880
4900
4920
4940
4960
4980
5000
5020
5040
5060
5080
5100
5120
5140
5140
5180
5200
5220
5240
=240
$28¢
5300
5320
5340
5360
5380
309
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DO S0 I = 1,1IB
DO 50 J = 1+JB
FXY1 = FXY1 4+ BUF(I+Jds1) % WT(I»J)
FXY2 = FXY2 + BUF(I,JsKB) X WT(I,J)
CONTINUE
ng 60 J = 1,»J4B
DO 60 K = 1,KB

FYTL = FYT1 + BUF(1lsJsK) ¥ WX(JsK)

FYT2 = FYT2 + BUF(IBsJsK) % WX(JsK)
YFYTL = YFYT1 + (J + Y1 - 1) % BUF(1,JsK) % WX(JsK)
YFYT2 = YFYT2 + (J + Y1 - 1) & BUF(IByJsK) X WX(JsK)
CONTINUE
D0 70 I = 1,IB
DO 70 K = 1,KB

FTX1 = FTX1 + BUF{I,1,K) x WY(I,K)

FTX2 = FTX2 + BUF(I,JB/K) X WY(I:K) .

XFTX1 = XFTX1 4+ (1 + X1 - 1) % BUF(Is1,K) X WY(I,K)

XFTX2 = XFTX2 + (I ¢+ X1 -~ 1) % BUF(I+JBsK) ¥ WY(I+K)
CONTINUE

DO 80 I = {,IB
00 80 J = 1sJB
DO 80 K = 1,KB
FXYT = FXYT + BUF(I+JsK) X W(I»JsK)

CONTINUE

ALFHAC(L) = FYT2 - FYTL

ALPHA(2) = FTX2 - FTX1

ALPHA(Z) = X2 % FYT2 - X1 % FYTI - FXYT + Y2 * FTX2 - Y1 x FTXi
ALPHA(4) = YFYT1 ~ YFYT2 + XFTX2 -XFTX1

BETA = FXY1 - FXY2

RETURN

END

(2303208280023 ¢232233033¢ 0022320828222 ¢2300032 0330030000202 020 00231
222220222200 P 00 RP 0000 PP 00 0000000000800 00 00300008008

SUBROUTINE BLDW BUILDS THE WEIGHING ARRAYS FOR THE
TRAFEZIOD RULE USED IN THE SUBROUTINE GETEQU. THESE ARRAYS
ARE PASSED TO GETEQU THRU A COMMON BLOCK.

1320033832003 03 82000033300 0033230 0033320338303 00333200033338833333%%

SUEROUTINE BLIW
¥ COMMON DECLARATIONS x
PHARAMETER (IW=9,JW=9+KW=3+»1B=3+ JE=3+KB=3y ISIZE=128+JSIZE=128)

COMMON /WEIGHT/ W(IE+JB'KB) rMX(JBsKR) +WY(IRsKR)WT(IByJB)
INTEGER WsWX WY NT

LOCAL VARAIRLES
INTEGER X» YT




5420
5440
5460
5480
5500
3520
5540
5560
5580
3600
5620
5640
5640
5680
5700
5720
5740
57460
57890
5800
5820
5840
3860
3880
5900
5920
5940
59460
5980
6000
5020
Y

6080
4100
6120
6140
61460
6180
6200
6220
6240
6260
4280
5300
6320
6340
5360
6380
6400
6420
6440
5460
5480

40

X =1R -1
Y=JB -1
T=KB-1

DO 40 I = 2:X
DO 40 J = 2sY
DO 40 K = 2,7
W{lsr1s1) =

2

W(Is+JBy1) = 2

Wi{ledrl) =
W(IB+Jr1)
W(1+JBK)
W(IBr1+K)
W(Is1+KB)
W(l1:J/KB)»
W(IBsJsKB)
W(IsJIBsKB)
W(IBsJBsK)
W(i,1,K)
W(IrJrik)
CISYRIT 9
W(ls1+K)
W(Irdsl)
W(Ir+JBsK)
W(IBsJsK)
W(IsJsKB)
WY(Ir,1) =
WY(1,K) =
WY (1K) =
WY(I,KB) =
WY(IB:K) =
WT(I»1)
WT(1,sd)
WT(I»J)
WT{(1,JB)
WT(IBsJ)
WX{JBsK)
WX(JsKB)
NX(1:K)
WXtJs1)
WX(JrK)
CONTINUE
W(le1s1) = 1
W(1,yJBr1) = 1
W(1+JBYKB) = 1
W(is1sKB ) = 1
W(IBs1s1) = 1
W(IB»JBs1) = 1
W(IBy1+KB) = 1
W(IBsJBsKB) = 1
WX(1,1) = 1
WX(1,KB) = 1
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WX(JBr1) = 1
WX(JBsKB) = 1
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i B10

: 6500 WY(1s1) = 1
. 6520 WY(1)KB) = 1
f 4540 UY(IBe1) = 1
| 5560 WY(IB/KB) = 1
‘ 4580 WT(1s1) =1
i 6600 WT(1sJB) = 1 :
] 6620 WT(IRsi) =1 :
§ 6640 WT(IBs»JB) = 1 i
} 66460 RETURN f
d 6680 END ;
\ 4700 € i
i YA IR 322848832 ts88tccesttdtt ettt tttettttstssstttttsstssssctsttsstetttsss
: Y2 I $ 333 2288003800238 238388 08388 00880082808 238¢082338002282328¢8822T0¢00] :
i 6760 C SUBROUTINE FRINT WRITES TO UNIT = 46 THE MOTION PARAMETERS
6780 C OF THE IMAGE AND THE WINDOW AT EACH TIME STEP. THE PIXEL ;
i 4800 € VALUES ‘IN THE WINDOW MAY ALSO BE PRINTED IF NEEDED.
{ 6820 € RXXEXXXRBRLXXXKLERLXXXELERLRREXKXXRRREREXXXERRREXXRXELREEREAXXXLRRELK
i 6840 C
J 4840 SUBROUTINE PRINT
;i 6880 €
: 6960 C X COMMON DECLARATIONS ¥
5 6920 C (
_ 5940 PARAMETER (IW=9,JW=9sKN=3,IB=3yJB=3,KB=3,151ZE=128,JS1ZE=128)
; 5260 C
; 5950 COMMON /WINDOW/ WIND(IWsJWsKW)sCORRD(ISIZE,JSIZE2)
] 7000 INTEGER WIND
; 7020 COMMON /ORIGIN/ I0+JOsKO»X0+YO
. 7040 INTEGER I0+JOsKOsX0sYD
i 7040 COMMON /COCHGS/ XVELIJYVELI,VROTI,VMAGI,TIME,TSTEP
i 7080 REAL XVELIsYVELI,VROTIsVUMAGI,TIME,TSTEP
i 7100 COMMON /FARMS/ ROWsCOL »PROWPCOL » NUMROW» NUMCOL s WTEST
: 7120 INTEGER ROW»COLsPROWsPCOL »NUMROW s NUMCOL s WTEST
§ 7140 COMMON /EQU/ ALPHA(4)»BETAsCOEFF(9s4)sVECTOR(9)»SOLN(4) sFEED(4)
! 7160 INTEGER ALPHAsEETA
: 7180 C
i 7200 € % LOCAL VARIABLES ¥
7220 REAL XTRANWsYTRANWsROTWsMAGW» XVELWs YVELW»VROTW» UMAGH » XTRANI » !
7240 ] MAGI,ROTI,»YTRANI ?
7260 C |
7280 DATA XTRANMs YTRANWsROTWyMAGH /01090907
7300 C
7320 XTRANI = XVELIXTINE ~
7340 YTRANI = YVELIXTIME
7360 MAGI = VMAGIXTIME
7380 ROTI = VROTIXTIME
7400 C
7420 XTRANM = SOLN(1) + XTRANW
7440 YTRANW = SOLN(2) + YTRANMW
7460 MAGW = SOLN(3) + MAGW
7480 ROTW = SOLN(4) + ROTW
7500 C
3 7520 XVELW = SOLN(1)3(1/TSTEP)
: 7540 YVELW = SOLN(2)%(1/TSTEP)
j 7540 UMAGM = SOLN(3)&(1/TSTEP)




7380
7600
7620
7540
7560
7680
7700
7720
7740
7760
7780
7800
7820
7840
7860
7880
7900
7920
7940
7960
7980
8000
8020
3040
8040
8080
8100
8120
8140
8160
3180
8200
8220
8240
82460
8280
8300
8320
8340
8360
8380
3400
8420
8440
9440
8430
8500
8520
83540
8960
gceo
8500
8620
3649

30

36

w o

10

i1

12

13

c
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VROTW = SOLN(4)X(1/TSTEP)

IF (WTEST .EQ. 1) THEW
ITEMP = COL - PCOL + (IW+1)/2
JTEMP = ROW - FROW + (JW+1)/2
WRITE(86730) CORRD(ITEMP s JTENP»1) CORRDCITEMP»JTEMP2)
FORMAT (1Xs'CENTER OF WINDOW AT (‘s FR.5 ¢ ' ¢F2:5¢')'+/)

WRITE (66:36)
FORMAT (//1X,’WINDOW VALUES’:/)
N0 4 K = 1,KW
00 S J=1Jd4
WRITE (66+6) (WIND(I»JyK)sI=1,1W)
FORMAT (1X,<IW-(I4))
CONTINUE
WRITE (46,+8)
FORMAT (/)
CONTINUE

WRITE (646710) TIME»XTRANI»YTRANI»MAGI/ROTI»XVELI,»YVELI,
VHAGI»VROTI
FORMAT (1X»F5.4+8(3%XsE11.4)4/)

WRITE (46r11) t

FORMAT (10X XTRANW +8X» ‘' YTRANW' 18X "MAGH’ s 10Xy ‘ROTW" ¢
10X s " XVELW' s9X s *YVELW' 19X » ' UMAGN ' »9X» 'VROTW')
WRITE (86512) XTRANWsYTRANWMAGW,ROTW s XVELW» YVELW,VNAGW UROTH
FORMAT (8X,8(3XsE11.4)4/)
WRITE (66+13)
FORMAT(’1")

ELSE
WRITE (54,14) TIME,XTRANI»YTRANI,MAGI,ROTI,XVELI,YVELI,
UMAGI»VROTI
FORMAT(1X»F3.4+8(IXsEL11.4))
WRITE(66913) XTRANWsYTRANW,MAGW /ROTUW,XVELW, YVELW,VMAGWVROTW
FORMAT(11X,8(3XsE11.4),/)
ENDIF

RETURN
END

PERLE2 0332233323033 0202 0200000228280 802 0203800838830 833833033888¢33¢4¢4]
PEES ISP 3082020820203ttt st ot tsotobeetobitiobiby:

c

SUBROUTINE INIT IS USED TO INITIALIZE PARAMETERS.

(R 2300 e P02ttt b oot PR oseoost ot ibbosttssiootssttetesbostsss:

c

¢
c

SUBROUTINE INIT

% COMMON DECLARATIONS ¥
PARAMETER (IW=9,JW=9,KW=3,1B=3+JB=23+KB=3,1512E=128,JSI2E=128)

COMMON /WINDOW/ WIND(IW»JW+KW)sCORRD(ISIZESsJSIZE,2)
INTEGER WIND

COMMON /ORIGIN/ 105J0+K0»X0,Y0
INTEGER 105J0+K0vX0+Y0




8660
8430
8700
8720
8740
37580
3780
8800
8820
8340
8840
83880
3900
8920
8940
3950
8980
7000
2020
7040
9060
9080
9100
9120
9140
91460
7180
9200
9220
9240
9260
7280
9300
9320
9340
93460
9380
9400
9420
2440
7450
7480
9S00
9520
9540
75940
9580
7600
9620
9640
9660
74680
9700
9720

OO0

70
60

10

40

Bl2

COMMON /PARMS/ ROW,COLsPROW,PCOL » NUMROW» NUMCOL yWTEST

INTEGER ROW,COL,PROWsPCOL,NUMROW s NUMCOL sWTEST

COMMON /COCHGS/ XVELI,»YVELI,VUROTI,VMAGITIMEsTSTEP

COMMON /EQU/ ALPHA(4),»BETAsCOEFF(9,4),VECTOR(?),SOLN(4),FEED(4)
INTEGER ALPHA,RETA

THE PIXEL VALUE AT (COL.ROW) IS PUT INTO WIND(1,1,1)
WRITE (4+20)

FORMAT (1X, BEGIN WINDOW')

WRITE (6:50)

FORMAT (1X,’'ROM coL”)

READ (5,%x) ROW,COL

THE MOTION TO BE TRACKED

WRITE (6+30)

FORMAT (1Xy ' INPUTIXVELI,YVELI,VROTI/PI,VMAGI')
READ (Srx) XVELISYVELIVROTI,VMAGI

PROW
PCOL
NUMROW
NUMCOL

128
128

[T L ol

X0
Y0

coL + (Iw-1)/2
ROW + (Jw-1)/2

B0 40 I=1,NUMCOL
DO 70 J=1,NUMROW
CORRD(1I,Jr1)
CORRD(1+Js2)
CONTINUE
CONTINUE

"
o

TSTEP = 0,033
TIME = 2%TSTEP
PI = 3.14159
VROTI = VROTIXPI

10
Jo
KO

(IW+1)/2
(JW+1)/2
(KW+1)/2

D0 10 I=1.,4
SOLN(I) = 0.0
CONTINUE

FEED(1)

FEED(2)
FEED(3)

FEED(4)

b un o
— e . -
O oo O

»

WRITE (6+40)

FORMAT (1X, INPUT 1 cr, TO WRITE WINDOW OR O cr. TO SKIP')
READ (Ss¥) WTEST




9740

9760
9780
7800
9820
9840
9860
9880
9900
9920
9949
9960
9980
10000
10020
10040
10060
10080
10100
10120
10140
10160
10130
10200
10220
10240
10260
10280
10300
10320
10340
10360
10380
10400
10420
10440
10460
10480
10500
10520
10540
10960
10580
10600
10620
10640
10640
10680
10700
10720
10730
19740
| 10780
| 10800
|

OO0 OO0

O
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IF (WTEST .ER. 0) THEN

WRITE (64+5) IB

FORMAT (11X, 'WINDOW SIZE = ‘+12+//)

WRITE (446:3)

FORMAT(1Xr'TINE’»S5X» 'XTRANI'»B8X,s ' YTRANI‘+8Xs ' MABT’»10Xs'ROTY
3 210Xy "XVELI’ »9Xs "YVELI/ 99Xy VMAGL’ »9Xs 'VROTI )

WRITE (44:4)

FORMAT (15Xs " XTRANW’ 18X ' YTRANW' 18X+ ‘MAGH ' s 10X» 'ROTW 'y

% 10Xy " XVELMW' 99Xy " YVELW’' »9Xs ' VMAGM’ 19X+ ‘UROTM  4/)
ENDIF

RETURN
END

P2 2382282333080 0830083333302 8393332023233 8 0309353982330 00033¢00203¢8%]

1330223332203 23 0000000230000 2000003020000 53030 0030038030300 0338083%24
SUBROUTINE WINDOW (1) USES THE INTEGRATION RESULTS TD MOVE THE
WINDOW IN ORDER TO TRACK THE TARGET AND (2) PERFORMS THE MOTION
ON THE 1ST IMAGE USED 7D GET THE WINDOW AND WRITES THE RESULT
TO UNIT = N + 15,

1333333333333 20002 03200000 00003033333 3333233839323203228288¢ 0088803

SUKROUTINE WINDGW (M)

% COMMON DECLARATIONS X
FARAMETER (IW=%,JW=9+KW=3,18=3+JB=3+,KB=3,151ZE=128»JSIZE=128)

COMMON /WINDOW/ WINDB(IWsJWsKW)»CORRD(ISIZE,JSIZE,2)

INTEGER WIND

COMMON /EQU/ ALPHA(4),BETA+CDEFF(9,4),VECTOR(9)SOLN(4),FEED(4)
INTEGER ALPHA/BETA

COMMON /IMAGE/ IMAGE(ISIZE.JSIZE)

INTEGER®2 IMAGE

COMMON /BUFFER/ BUF(IB,JB/KB)

INTEGER ERUF

COMMON /PARMS/ ROW,COL,FROW,PCOL» NUMROW, NUMCOL )WTEST

INTEGER ROW,COL,»PROW,PCOL»NUMROW,NUMCOL »WTEST

%t LOCAL VARIABLES %

LOGICALX1 BIMAGE(ISIZE),BLINE(2XISIZE,»JSIZE)
CHARACTERX(ISIZE) IMAGELINE

INTEGERX2 NEWIM(ISIZE,JSIZE)

REAL ECOSW/ESINWIXWsI YW

EQUIVALENCE (BIMAGE,IMAGELINE),»(BLINE,NEWIM)

AFFINE TRANSFORMATION TO MOVE WINDOW

ITEMP = COL - PCOL + (IB+1)/2
JTEMP = ROW - PROW + (JB+1)/2

XW = CORRDC(ITEMP,JTEMP,1)

YW = CORRDCITEMP,JTENP,2)

ECOSW = EXF(SOLN(3)) % COS(SOLN(4))
ESINW = EXP(SOLN(3)) % SIN(SOLN(4))

M




10820
10840
10840
108890
10909
10920
10940
109690
10980
11000
11020
11040
11060
11080
11120
11120
11140
11160
11180
11200
1122

11240
11240
11280
11300
11320
11340
11360
11330
11490
11420
11440
11460
11480
11500
11520
11540
11549
11580
11600
11620
11640
116560
11680
11700
11720
11740
11760
11780
11800
11820
113490
11850
11880

Qo0

[ NeNel

OO0

20
10

90
80

S50
40

70
60

Bl4

DO 10 J=1,NUMROUW
DO 20 I=1,NUMCOL
CORRD(I»J91)=ECOSWX(CORRD(I»Js1)-XW)-ESINWX(CORRD(I»J»2)
-YW)+ECOSWESOLN(1)-ESINWXSOLN(2)
CORRD(I»Jy2)=ESINWX(CORRD(I»Jr1)-XW)+ECOSWX(CORRD(I,Js2)
-YW) +ESINWXSOLN(1) +ECOSWXSOLN(2)
CORRD(I+Js1) = CORRDC(IyJrl) + XW
CORRD(I»Js2) = YW + CORRD(I»J,2)
CONTINUE
CONTINUE

DFEN A IMAGE FILE AND FILL PIXEL VALUES INTO THE ARRAY IMAGE

DO 30 K=1,KW
KCOUNT = M + K + ¢
OFEN(UNIT=KCOUNT,»STATUS='0LD’»ACCESS="DIRECT’,
RECORDTYPE='FIXED’»READONLY)

DO 80 I=1,ISIZE
DO 90 J=1,JSIZE
IMAGE(I»J) = 0
CONTINUE
CONTINUE

B0 40 J=1,NUMROW
READ (KCOUNT'J) IMAGELINE
N0 S0 1=1,ISIZE
IMAGE(I,J) = BIMAGE(I) .AND., 255
CONTINUE
CONTINUE

USE THE TRANSFORMATION TO TRACK: STORE THE RESULT IN NEWIM

DO 60 J=1,NUMROW
DO 70 I=1,NUMCOL
IF (CORRD(I»Js1) .LT. 1 ,OR. CORRD(I+Js1) .GT. ISIZE

+OR, CORRD(IsJs2) .LT. 1 .OR. CORRD(I,J,2) .GT. JSIZE)

THEN
NEWIM(I+J) = O
ELSE
NEWIM(I,J) = IBILIN(CORRD(I»Jy1)s»CORRD(I+J»2))
ENDIF
CONTINUE
CONTINUE

CLOSE (UNIT=KCOUNT)
FILL WINDOW WITH NEW PIXEL VALUES

PO 110 I=1,1IW

00 120 J=1,JW
CoL - PCOL ¢+ 1
ROM - FROW ¢+ J

ITEMP
JTEMP

[T}




e

11900
11920
11740
11940
11980
12000
12020
12040
120580
12080
12100
12120
12149
12160
12180
12200
1222
12240
12260
12280
12300
12320
12340
12360
12380
12490
12420
12440
12469
12480
12500
12520
12540
12569
12580
124600
12620
12540
126460
12630
2790
12720
12740
12750
12780
12800
12820
12840
12840
12880
12900
127920
12940
12940

B15

WINDCI»JyK) = NEWIMCITEMP,JTEMP)

120 CONTINUE
110 CONTINUE
C
c WRITE TRACKED IMAGE INTD A FILE
C
IF (K +EQ. 1) THEN
OPEN(UNIT=KCOUNT+15,STATUS="NEW’»ACCESS="DIRECT",
i RECORDTYPE=FIXED’ RECL=NUMCOL/4+BLOCKSIZE=NURCOL)
DO 130 J=1,NUMROMW
DO 140 I=1,NUMCOL
RIMAGE(I) = BLINE(I1%2-1,J)
140 CONTINUE
WRITE (XKCOUNT+15‘J) IMAGELINE
130 CONTINUE
CLOSE (UNIT=KCOUNT+13)
ENDIF
c
30 CONTINUE
RETURN
END
c
RSS2 82720 3323220208020 0 3000080080000 8320023033200323008233000830024
PR F22 2330080200202 0330380033200 03303 00080302 0038072033033380030083%4
c

SUBROUTINE LINEQ(AsX»BsM»NsCC)
INTEGER €C

SOLVE AX=B., T HOLDS AN UPPER TRIANGULAR MATRIX WHILE S

1S WORKSPACE., THE METHOD FACTORS A=UXT WHERE THE COLUMNS OF
U ARE ORTHDGANAL AND T IS TRIANGULAR. THE RESULTING SYSTEM
T*X=B“ IS EASILY SOLVED BY BACK SUBSTITUTION. ASSUHE N
EQUATIONS AND N UNKNOWNS, ( N <= M <= %)

THE MATRIX OF COEFFICIENTS, A IS STORED IN THE FIRST N ROWS
AND THE FIRST M COLUMNS OF THE 9X? A ARRAY., THE ROUTINE
BRINGS IN THE WHOLE 9X9s BUT ONLY USES A(1s1) TO A(N:M)
(RECALL THAT FORTRAN STORES THE ARRAY COLUMN-WISEs BUT
ADRESSES THE ELEMENTS IN THE STANDARD ROW,COLUMN FORMAT)
NOTE: THE A ARRAY 1S ALTERED DURING EXECUTION.

OO0OOO0O0O00000000

DIMENSION A(992)9T(929)sX{N)»B(M)
=1
M MUST BRE <= 9+ AND N<=M., CC IS A COMPLETIDN CODE; IF THE
C  SUBROUTINE EXECUTES PROPERLY CC WILL RE RESET TO 0 BEFORE RETURN
00 40 I=1,N
IF (I.EQ.1) GO TO 25
DO 20 J=1,M
3=0
Ii=1-1
B0 10 K=1,I1
IF (T(K»K) LT, ,0001) GO TO 5000
§=S+ACI KIST(Ky [)/T(K)K)
10 CONTINUE
CISEDOELI TS @ B

o




12980
13000
13020
13040
13060
13080
13100
13120
13140
13140
11180
13200
13220
13240
13260
13280
13300
13320
13340
13340
13380
13400
13420
13440
13460
13480
13500
13520
13540
13560
13580
12500
13420
13640
13540
13680
13700
13720
13740
13760
13780
138090
13820
13840
13840
13280
13900
13920
13930
13960
1378¢
14000
14020
14040

c

(]

o000

OO OO0 000

31l6

20 CONTINUE
25 DO 40 K=1,N
5=0
pg 30 J=1,H
S=8+A(J I)XALJK)
30 CONTINUE
T(I:K)=8§
40 CONTINUE
D0 60 I=1,N
S=0
B0 50 J=1,M
S=S+A(J1IXBC))
50 CONTINUE
X{1)=§
60 CONTINUE
D0 80 I=1,N
I1=N+1-1
IF (I1.EQ.N) GO TO 75
12=11+1
D0 70 J=I2:N
X(ID=X(I1)~T{I1,J)%X(J)
70 CONTINUE
IF (T(I1,11).,LT7..0001) GO TO 5000
75 X(I1)=X(I1)/T(I1s1I1)
80 CONTINUE
€C=0
RETURN
5000 CC=-1

A COMPLETION CODE OF -1 INDICATES THAT THE SUBROUTINE
TRIED T0 DIVIDE BY 0.

RETURN

END

0230023292 0223 2232300203028 000 0ot o oot botisstisotiobiotesss
L2200 PP R PR Piiott oot iPoeeeiie st bibts

INTEGER FUNCTION IBILINX2(XX»YY)

THIS FUNCTION RECEIVES 2 REAL COORDINATES (FRODUCED BY THE TRANS-
FORMATION IN THE CALLING ROUTINE) WHICH ARE COORDINATES RELATIVE

TO THE OLD IMAGE. SINCE THE COORDINATES ARE REAL VALUED,

THE POSITION WILL NOT BE ON A PARTICULAR PIXEL, BUT RATHER AMONG
4, THIS FUNCTION RETURNS A BILINEAR INTERPOLATION FOR THE 4
SURROUNDING POINTS.,

FARAMETER (ISIZE=128,JS12E=128)
COMMON /IMAGE/ IMAGE(ISIZE,JSIZE)
INTEGER*Z IMAGE

REAL HsVsHTEMP1,HTEMPR/VUTEMP

MX1=MAX (0 INT(XX))
MX2=MINCISIZE,INT(XX)+1)

HY1=MAX(O» INTLYY))
MY2=MINCJSIZEs INT(YY)+1)




14040
13030
1410C
14120
1414Q
18160
14180
14200
14220
14240
14260

B17

HTEMP1=HXIMAGE (MX2,8Y1)$(1.0-H) XIMAGE (KX1,HY1)

NTEMP2=HXIMAGE (MX2,MY2)+(1,0-H)XIRAGE (MX1s4Y2)

UTEMP =VRHTEMP2+(1.0-V)SHTENP]

IBILIN=ININT (VTEMP)

RETURN

ERD
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ADAPTIVE PATTERN MATCHING USING CQUTROL THEORY ON LIE GROUPS*

Thomas G. YNewman and Leovold Zlobec
; Taxas Tech Universaty
| Lubbock, Texas

abstract

A method is given for matching a subpattern of a two-~dimensional

image against a stored prototype, where the lattsr is defined on a

window whose position and shape is determined by the action of a Lie

group of transformations. The method involves the construction of a

path in the control group along which :he matching error decreases '
to a local minimum.

: 1. INTRODUCTION how two planar images could be matched un-
B der arhitrary affine transformation of :the
plane, if a match were at all zossible. In

? A rroblem of classical interest in pattern
. racogniticn is that of determining the

’ presence or ahsence of a particular sub-

j pattern or subpattern class. In the anai-
b

14

addition to affine transformaticns, an al-
lowance was also made for dilation of in-
y3is of cwo~dimensional imagery this can tensity scale such as that which results

from under or over exposure of film within

latitude limits. The results cited, how-

cake the form of detection of corners and

edges or the location of a gspecific sil-
aver, are of little use in matching subpat-

|
]
! houette. More particularly, we may be in-
: terns, since the algorithms are highly sen-

terested in obtaining an axact match of a

1 i 3 -
specific portion of the image to a sub- sitive to the background context. JNever
theless, the utility of a group theoretic
approach to pattern matching was clearly

demonscrated.

image, often a prototype, which may appear
in an arbitrary manner, varying in size,
location and orientation. This is the
oroblem which is herein addressed. In the following we »2resent a method for
performing a lccal search for an imbedded
subpattern of a zwo-dimensional :image. The

A related Juestion was considered by Dir-
ilten and Yewnman (3] where it was shown

*This research was supported by the Armvy Research Office, Contract
CAAG29-8C-C-0087 and by the 0ffice of liaval Research, Contract
N0014-76~C-1136.




method 1s one iavolving adaptive contzol
of a retina which seeks the desired sub-
pattern by evolving along a curve in the
space of paramecers in a directicn which
assures improvement in the goodness of
fie.

2. BACKGROUND

Let G be a Lie group of transformation on
an analytic manifold M. Suppose G has di-
mension n while M has dimension m. Let x
and v denote the coordinates of elements £
and g in G, -espectively, in a patch con-
zaining the identity element e of G. Also,
let p denote coordinates of an element u
of M in some patch in 4. We may then ex-
press the coordinates z of the product
h = £ and the coordinaces q of <he ele~-
ment v = gu, relative to suitable patches,
by means of analytic functions

z = J(x,y) (2.1)

q = K(y,p) (2.2)

X and J are vector-valued, having values
in n-dimensional space 3% or ¢* and m~
dimensional space 8" or ™. Hereafter we
shall assume that these underlying spacas
are real. We denote the ith component of
J by I and the jth component of X by xj.
In order to define the Lie algebra of G we

-~

first introduce real-valued maps on 3 by
3Ji )
Pij(X) - svg(x,y)yy_e, (2.3}

where i and ) each range from L %20 a. The
cross-section P'j' which consists of the
Pi] as 1 ranges from L to n, and j 13 fix-
ed, may be thought of as a vector field in
27, such 2 vector field attaches o a

Foint x the vector P.j(x). As such, P'l’
Pegs-+-+P,, form a basis for the tangent
space at the poeint x (l,2]. The i1nfinite-

simal transformations of G may now be de-
fined by

X, = P () g, (2.4)

2
N Lw) X3

C3

for 3 = 1,2,...,4.

The differential operators so defined are
o be considered 2s l.near cperators on the
space of apalytic Zunctions on G, or, more
generally, on the space of differentaable
functions on G. The Lie algebra >f 5 s
simply the n-damensional vector space con-
sisting of all l:inear combinations of <hese
operators, and will be denoted by L(G) [2].

The Lie algebra of 5 may also be defined in
terms of its actions on the maniJold M.
Analogous =o (2.3) we Jefine

3K

. b3 1 -
Q1j\p) = gvg(y,p) yma (2.5)
for a = 1,2,...,mand j = 1,2,...,a. Fin-

ally, as in (2.4) above we sat

m -
X! = 72 e (2.6)
] ya] 23 8y
The operators xi. X0 ooy Xé apply to

functions defined on M and span a Lie alge-
bra isomorphic to L(G).

The following result from [4] will be used
later, and is stated for refarence:

Theorem 2.1. Let £: M -~ R be differenti-
aibe and define F: G x M - R, in terms of
coordinatas, by

Fl{x,p) = $(X(x,p)). (2.7
Then for each j = 1,2,...,a we have
X,F = XF. (2.8)
3 3

Let us consider a curve t - 3(t) in G sat-
isfying g(0) = e. In :erms of a coordinate
patch at a, g(t) may be described by a
curve x(t) in R}° sacisfying x(0) = 2. We
shall considar the case in which x(%) is
given as the solution of an avolution equa-
tion of the form

. a

x(t) = x;(:)P.i(x(t)). x(0) = 3,(2.9

1=l °

where P, ,...2,, are cross-sections oI the
array of functions given by :2.3), and
iLl:),....-:\:) are suitablie control func-
cions.




Now Let o dsnote zhe coordinates of a
point u 1n some coordinate pacch. For a
differentiable map £: M - R we may define
4Y: R} < M+ R by setting

H(x,p) = £(g(Llu). (2.10)
We recognizs that H(t,p) = F(x(t),p) where
F is the exzension of £ t0 G * M as in
Theorem 2.1 above. From the point of view
of application, if we regard £: M - R as
an image, then H(t,p) represents the mov-
ing image obtained by translation due to
the curve g(t). Also from {4], we have

Theorem 2.2. In the context above,

a
= oA (e)XiH, (2.11)
pmp 1R

it

3. THE CONTROL MODEL

3y an image we mean a map f: M - R, where
the value £(p) at a point p @ M represents
the gray value at the picture element at
p. Ia practice, values are observed on a
subset W M, which we regard as a window
which may be translated by the action of G
on M. Thus, upon translation by an ele-
ment x € G, the value observed at 0 € W is
given by Fix,p: = £(X(x.p)), a8 in {2.7)
above,

We consider a given prototype sub-image V
defined on the window W, V: W ~ R. The
problem then is to determine x € G such
that F(x,p) = V(p) for all p € W, or deter-
mine that no such x exists. As a matter
of practice, we seek x € G which minimizes
the objective function

v =3[ (Ftem ~ vien e, (1)
W
where dp represents a volume slement and
the inteqral is over the window W, which
is assumed to be of bounded volume.

In 7eneral, for any two functions fl,fz:
W@ - M we define

<:L,£2> - lflfzdp and
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Thus, ¥Y(x) = - 2/2, where x 15 ra-

garded as a parameter.

The following i{s a well-known property of
the Lie group G [2]:

Lemma 1. In order that the differential

d (x}) = 0 at a point x € G, it is necessary
and sufficient that sach X,7(x) = 0 where
xl,xz,...,xn are the gene:;tors of L(G)
given by (2.4).

3y direct calculation, we obtain X;¥ix) =
f(rix,p) =~ Ve X, Fix,pidp. In practice,
Zhis expression is difficult to cormpute
numerically, due to the presence of tha
term xiF' which cannot be computed directiy
from observed data. However, by Theorenm
(2.1) we have X;F = X{F, and the latter can
be calculated from a single value of x.

Suppose now that a curve in G is given by
coordinates x(t) obtained as a solution of
Equation (2.9). We seek o find iA(t) =
(kl(t),...,an(c)) so that v(t) = ¥(x(t))
decreases to a minimum value. Defining
H(t,p) = F(x(t),p) we obtain,

Se) = m(em - Vi) (e,piep (3.2)
w

which, by application of Theorem (2.2}, be-
comes

n ’
B(E) = T\ (8)(H(z,p) - V(p))X{H(t,p)dp
ism] W
2 {3.3)
= A (R)<H - VX%
iw) *

Upon observing that <H -~ V,xiH> =
<F - V'xiF> B xiv at x » x(t), we deduce:

Theorem 3.1. H \i(:) is chosen so that
sgnki(t) = - sgn <R - V,X{H>, we have

2(t} & 0 for all t, with equality at & = gy
if and only if dY = 0 at x = x(to).

Aamong “he zlass of bounded coantrols,
"4y 7 (&) 5 1, we see that tha rats of de-
crease of (&) is maximized by the choice

1i(t) = - sgn <H ~ 7, X!¥>, (3.4}



far 1 = L,2,...,n. QJf course, ocher stra-
-~egies can se Sormulated, including steep-
ast lescent, and some nethods using un-
nounded controls. 3y proceeding along
<rajactories defined by <he sclution of
(2.9 with +(t) given by (3.31), we ap-
proach a critical point of ¢ (i.e. @ = {0).
Since maxima and saddla points are un-
stable .nder perturbation, in practice
this extrema point will always be a mini-
m.

4. SIMULATION RESULTS

The results discussed in the previous sec-
tion have been implemented by a discrete
algorithm and tested on simrylated data (5]
A digitized :“wo-dimensional image was
first generated in the form of a large
two-dimensional array, and the prototype
was genarated in a 20 x 20 window array.

The image space was assumed to be subject
to translation, magnification and rotation,
giving rise to a four parameter Lie group
of transformations in the plane, R".

A number of cases were considered, includ-
ing some involving multiple (false) tar-
gets and ozhers in which the prototype was
absent from the image being searched. In
some cases the imaga was contaminated by
589 random noise. I[n all cases the search
was started with overlap between the pro-
totype target and the image targec.

The differential equation (2.9) was solved
by means of a Runge-Kutta fourth order
method, with a dynamic step size, which
was 1ncreased as necessary to accelerace
convergence and decreased as necassary to
maintain stability. Intagration was re-
placed oy summation, although we conjec-
Ture that convergence could have been ac-
celerated by the use of a :trapezoid rule.

3enarally, search times ranged from 30 to
50 3teps, with the longer search times
prevailing for the more difficult cases.

C5

In all cases, the final results ware Jjuite
reagonable, even .n those cases Where the
prototyme was absent. In the latter cases,
che search terminated with a “"best” natch,
with a cormensurately large final error.

As an example, Figure 1 shows that star=ing
position for a noisy image containing two
objects. The prototype is indicated by the
central silhouettes, while the true -arget
is shifted upward, slightly to the right
and is reduced in size. A false tarcet
overlaps the lcwer right corner of the pro-
totype. )

Fig. 1. Initial Windew Posizion.

The termination conditions are shown in
Figure 2, where the true target was located
after 49 steps. All parameters were cor-
rect with the axception of magnification,
which was about 5% too large. Smaller val-
uaes of magnification, however, i1ncrease the
error due to the prasence of the false ob-
ject, which 13 barsely touching the boctom
adge of the waindow in Figure 2.




.-O
se o 1 dt*e 0 anl

Fig. 2. Terminal Window Position.
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